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Inflation as an EFT

• Single “Order Parameter”: Φ(x,t)

• UV incomplete:

reheating

Figure 4: Examples of inflaton potentials. Acceleration occurs when the potential
energy of the field V dominates over its kinetic energy 1

2 φ̇
2. Inflation ends at φend

when the slow-roll conditions are violated, � ∼ 1. CMB fluctuations are created by
quantum fluctuations δφ about 60 e-folds before the end of inflation. At reheating, the
energy density of the inflaton is converted into radiation. (Left) A typical small-field
potential. (Right) A typical large-field potential. [15]

Using the usual relation w = p/ρ, this means we can easily obtain w < −1
3 so long as

V dominates over 1
2 φ̇

2.

Two very important quantities are the so-called slow-roll parameters, which indicate

the change of a quantity with respect to the e-foldings N ,

� ≡ − Ḣ

H2
= −d ln H

dN
, η ≡ −d ln �

dN
.

In the model under consideration in eq. (2.6), these have the expression

� =
M

2
pl

2

�
V

�

V

�2

, η = M
2
pl

V
��

V
. (2.8)

Assuming that the slow-roll conditions �, η � 1 (note that in pure de Sitter space,

� = 0) the solution to (2.7) is

H
2 ∼ 1

3
V (φ) ∼ constant, φ̇ ∼ − 1

3H
V

�
, a(t) ∼ e

Ht
.

Inflation will happen as long as � < 1. The number of e-folds of geometric expansion

before this happens is

N ≡ ln
af

ai

=

�
tf

ti

Hdt =

� φf

φi

H

φ̇
dφ ≈

� φf

φi

V

V � dφ =

� φf

φi

dφ√
2�

.
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δV ∼

V

M2

P

φ2 η ∼ O(1)
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Inflation in String Theory

Rarely a single field model: many more field directions!
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Conventional Wisdom

• If m> H, we can integrate them out:

• Only the light fields (m<H) contribute to curvature/
isocurvature perturbations.

• If only one with m< H, effective single field model.

m

H
mΦ

{Integrate out
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Short Distance Scale

Weinberg, 08

S =
�

d4x
√
−g

�
1
2
M2

P R +
1
2
gµν∂µφ∂νφ− V (φ)

�
+O

�
1
M

�

Slow-roll inflation:

In one Hubble time: ∆φ = φ̇H
−1 =

√
2�MP

For EFT truncation to finite powers of Φ/M:

M >>
√
2�MP
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Classical Background

4 Models with two scalar fields

We now study the evolution of perturbations in systems containing only two relevant scalar

fields. In this case, it is always possible to take the set of vielbeins {eaI} to consist entirely in

e
a
T = T

a and e
a
N = N

a defined in Section 2.1. Then, the projection tensor Pab introduced in

(2.23) vanishes identically and one is left with the following relations:

DT
a

dt
=−Hη⊥N

a
, (4.1)

DN
a

dt
=Hη⊥T

a
. (4.2)

At this point we notice that the normal vector Na has always the same orientation with respect

to the curved trajectory, which is due to the presence of the signature function sN in (2.9). For

definiteness, let us convene that the normal direction N
a has a right-handed orientation with

respect to T
a as shown in Figure 3. With this convention η⊥ changes signs smoothly in such a

way that if the turn is towards the left then η⊥ is negative, whereas if the turn is towards the

right then η⊥ is positive. A concrete choice for T a and N
a with these properties are:

T
a =

1

φ̇0

�
φ̇1

, φ̇2
�
, (4.3)

N
a =

1

φ̇0
√
γ

�
−γ22φ̇

2 − γ12φ̇
1
, γ11φ̇

1 + γ21φ̇
2
�
, (4.4)

φ1

φ2

Na

T a

T a

Na

η⊥ < 0

η⊥ > 0

Figure 3: The figure shows a fixed right-handed orientation of Na with respect to T a. If the turn is towards

the left then η⊥ is negative, whereas if the turn is towards the right then η⊥ is positive.
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Multi-field:

Notes: EFT for Multifield Inflation

Xu

April 25, 2011

1 Lagrangian Comparison

We compare the quadratic action of quantum perturbations in a class of multifield inflation models

with the effective action of the Goldstone field derived by Senatore & Zaldarriaga.

1.1 Classical Background

The the multifield inflation models we consider have the action

S =

�
d

4
x
√
−g

�
1

2
γab∂µφa∂νφ

b − V (φa
)

�
(1)

Here we have N scalar field φa
(a = 1, 2, . . . , N).

The classical field φa
(t) follows the equation of motion

φ̈a + +Γa
bc φ̇bφ̇c

+ 3Hφ̇a
+ γab∇bV = 0 . (2)

Define the covariant derivative as

Dtφ̇
a ≡ dφ̇a

dt
+ Γa

bc φ̇bφ̇c
, Γa

bc =
1

2
γad

(γdb,c + γdc,b − γbc,d) , (3)

we can then write Eq.(2) in a more concise form as

Dtφ̇a + 3Hφ̇a
+ γab∇bV = 0 (4)

The classical field φa
(t) can be combined into a composite scalar field φ0(t), whose velocity always

points in the tangent direction of the classical field trajectory. Such a composite field φ0(t) can be

defined through

φ̇2
0 ≡ γabφ̇

aφ̇b
. (5)

Taking a covariant derivative Dt on both sides of the above equation and using Eq.(4), we get

φ̈0 + 3Hφ̇0 +∇�V = 0 , (6)

with ∇�V the covariant derivative on the potential along the tangent direction of the classical path

∇�V ≡
φ̇a

φ̇0

∇aV .
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Composite field
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Introduce vielbeins:

Turn rate:

& the rest denoted by

1.2 Kinematic Basis

The metric γab can be locally diagonalized by a set of vielbeins eI
a,

eI
ae

J
b δIJ = γab , eI

ae
J
b γab

= δIJ .

In particular, it will be convenient to let two of the vielbeins to point in the tangent and normal

directions of the classical trajectory,

ea
ζ ≡

φ̇a

φ̇0

, ea
σ ≡

Dtea
ζ

|Dtea
ζ |

(7)

The rest of the vielbeins are collectively denoted by ea
s .

Since eI
ae

I
bγ

ab
= 1, by taking a covariant time derivative on both sides, we can show that eζ and eσ

are orthogonal by construction, i.e.,

(Dte
I
b)e

I
aγ

ab
= 0 . (8)

The set of vielbeins {ea
I} define a set of complete orthonormal basis in the field space spanned by

φa
. We have denoted the first two base vectors to be ea

ζ and ea
σ, and will denote the rest N −2 base

vectors orthogonal to eζ as ea
m, i.e. ea

I = {ea
ζ , e

a
σ, ea

m} (m = 1, 2, . . . , N − 2). The {a, b, . . . } indice

will be lowered and raised by γab
, and {I, J, . . . } ≡ {ζ, σ, m} indice will be contracted by δIJ

.

Another useful parameter is the turn rate θ̇ of the classical trajectory. We define

θ̇ = eσa(Dte
a
ζ ) . (9)

Using the classical equation of motion Eq.(4) and Eq.(6), we can relate θ̇ to the potential gradient

along the eσ direction, i.e.

θ̇ = −ea
σ∇aV

φ̇0

= −∇σV

φ̇0

. (10)

ea
σ∇aV can therefore be understood as the centripetal force to bend the classical trajectory.

1.3 Quadratic Action for the Perturbations

The quadratic action in the spatially flat gauge is given by

S(2)
=

1

2

�
d

4x a3

�
D̃tQ

ID̃tQ
JδIJ −

1

a2
∂iQ

I∂iQJδIJ −mIJQIQJ

�
, (11)

Here QI
is the scalar field perturbation along the kinematic basis QI ≡ eI

aδφ
a
.

Note that the covariant derivative D̃t on QI
is different from the covariant derivative Dt on the

classical field φ̇a
. Following Ref.[13], D̃t is constructed using the spin connection Y I

J , i.e.

D̃tQ
I ≡ Q̇I

+ Y I
JQJ , (12)

Y I
J ≡ eI

aDte
a
J . (13)
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Classical Background

4 Models with two scalar fields

We now study the evolution of perturbations in systems containing only two relevant scalar

fields. In this case, it is always possible to take the set of vielbeins {eaI} to consist entirely in

e
a
T = T

a and e
a
N = N

a defined in Section 2.1. Then, the projection tensor Pab introduced in

(2.23) vanishes identically and one is left with the following relations:

DT
a

dt
=−Hη⊥N

a
, (4.1)

DN
a

dt
=Hη⊥T

a
. (4.2)

At this point we notice that the normal vector Na has always the same orientation with respect

to the curved trajectory, which is due to the presence of the signature function sN in (2.9). For

definiteness, let us convene that the normal direction N
a has a right-handed orientation with

respect to T
a as shown in Figure 3. With this convention η⊥ changes signs smoothly in such a

way that if the turn is towards the left then η⊥ is negative, whereas if the turn is towards the

right then η⊥ is positive. A concrete choice for T a and N
a with these properties are:

T
a =

1

φ̇0

�
φ̇1

, φ̇2
�
, (4.3)

N
a =

1

φ̇0
√
γ

�
−γ22φ̇

2 − γ12φ̇
1
, γ11φ̇

1 + γ21φ̇
2
�
, (4.4)

φ1

φ2

Na

T a

T a

Na

η⊥ < 0

η⊥ > 0

Figure 3: The figure shows a fixed right-handed orientation of Na with respect to T a. If the turn is towards

the left then η⊥ is negative, whereas if the turn is towards the right then η⊥ is positive.
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Multi-field:

Notes: EFT for Multifield Inflation

Xu

April 25, 2011

1 Lagrangian Comparison

We compare the quadratic action of quantum perturbations in a class of multifield inflation models

with the effective action of the Goldstone field derived by Senatore & Zaldarriaga.

1.1 Classical Background

The the multifield inflation models we consider have the action

S =

�
d

4
x
√
−g

�
1

2
γab∂µφa∂νφ

b − V (φa
)

�
(1)

Here we have N scalar field φa
(a = 1, 2, . . . , N).

The classical field φa
(t) follows the equation of motion

φ̈a + +Γa
bc φ̇bφ̇c

+ 3Hφ̇a
+ γab∇bV = 0 . (2)

Define the covariant derivative as

Dtφ̇
a ≡ dφ̇a

dt
+ Γa

bc φ̇bφ̇c
, Γa

bc =
1

2
γad

(γdb,c + γdc,b − γbc,d) , (3)

we can then write Eq.(2) in a more concise form as

Dtφ̇a + 3Hφ̇a
+ γab∇bV = 0 (4)

The classical field φa
(t) can be combined into a composite scalar field φ0(t), whose velocity always

points in the tangent direction of the classical field trajectory. Such a composite field φ0(t) can be

defined through

φ̇2
0 ≡ γabφ̇

aφ̇b
. (5)

Taking a covariant derivative Dt on both sides of the above equation and using Eq.(4), we get

φ̈0 + 3Hφ̇0 +∇�V = 0 , (6)

with ∇�V the covariant derivative on the potential along the tangent direction of the classical path

∇�V ≡
φ̇a

φ̇0

∇aV .
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Introduce vielbeins:

Turn rate:
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1.2 Kinematic Basis

The metric γab can be locally diagonalized by a set of vielbeins eI
a,

eI
ae

J
b δIJ = γab , eI

ae
J
b γab

= δIJ .

In particular, it will be convenient to let two of the vielbeins to point in the tangent and normal

directions of the classical trajectory,

ea
ζ ≡

φ̇a

φ̇0

, ea
σ ≡

Dtea
ζ

|Dtea
ζ |

(7)

The rest of the vielbeins are collectively denoted by ea
s .

Since eI
ae

I
bγ

ab
= 1, by taking a covariant time derivative on both sides, we can show that eζ and eσ

are orthogonal by construction, i.e.,

(Dte
I
b)e

I
aγ

ab
= 0 . (8)

The set of vielbeins {ea
I} define a set of complete orthonormal basis in the field space spanned by

φa
. We have denoted the first two base vectors to be ea

ζ and ea
σ, and will denote the rest N −2 base

vectors orthogonal to eζ as ea
m, i.e. ea

I = {ea
ζ , e

a
σ, ea

m} (m = 1, 2, . . . , N − 2). The {a, b, . . . } indice

will be lowered and raised by γab
, and {I, J, . . . } ≡ {ζ, σ, m} indice will be contracted by δIJ

.

Another useful parameter is the turn rate θ̇ of the classical trajectory. We define

θ̇ = eσa(Dte
a
ζ ) . (9)

Using the classical equation of motion Eq.(4) and Eq.(6), we can relate θ̇ to the potential gradient

along the eσ direction, i.e.

θ̇ = −ea
σ∇aV

φ̇0

= −∇σV

φ̇0

. (10)

ea
σ∇aV can therefore be understood as the centripetal force to bend the classical trajectory.
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aδφ
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Classical Background

4 Models with two scalar fields

We now study the evolution of perturbations in systems containing only two relevant scalar

fields. In this case, it is always possible to take the set of vielbeins {eaI} to consist entirely in

e
a
T = T

a and e
a
N = N

a defined in Section 2.1. Then, the projection tensor Pab introduced in

(2.23) vanishes identically and one is left with the following relations:

DT
a

dt
=−Hη⊥N

a
, (4.1)

DN
a

dt
=Hη⊥T

a
. (4.2)

At this point we notice that the normal vector Na has always the same orientation with respect

to the curved trajectory, which is due to the presence of the signature function sN in (2.9). For

definiteness, let us convene that the normal direction N
a has a right-handed orientation with

respect to T
a as shown in Figure 3. With this convention η⊥ changes signs smoothly in such a

way that if the turn is towards the left then η⊥ is negative, whereas if the turn is towards the

right then η⊥ is positive. A concrete choice for T a and N
a with these properties are:

T
a =

1

φ̇0

�
φ̇1

, φ̇2
�
, (4.3)

N
a =

1

φ̇0
√
γ

�
−γ22φ̇

2 − γ12φ̇
1
, γ11φ̇

1 + γ21φ̇
2
�
, (4.4)

φ1

φ2

Na

T a

T a

Na

η⊥ < 0

η⊥ > 0

Figure 3: The figure shows a fixed right-handed orientation of Na with respect to T a. If the turn is towards

the left then η⊥ is negative, whereas if the turn is towards the right then η⊥ is positive.
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Multi-field:

Notes: EFT for Multifield Inflation

Xu

April 25, 2011

1 Lagrangian Comparison

We compare the quadratic action of quantum perturbations in a class of multifield inflation models

with the effective action of the Goldstone field derived by Senatore & Zaldarriaga.

1.1 Classical Background

The the multifield inflation models we consider have the action

S =

�
d

4
x
√
−g

�
1

2
γab∂µφa∂νφ

b − V (φa
)

�
(1)

Here we have N scalar field φa
(a = 1, 2, . . . , N).

The classical field φa
(t) follows the equation of motion

φ̈a + +Γa
bc φ̇bφ̇c

+ 3Hφ̇a
+ γab∇bV = 0 . (2)

Define the covariant derivative as

Dtφ̇
a ≡ dφ̇a

dt
+ Γa

bc φ̇bφ̇c
, Γa

bc =
1

2
γad

(γdb,c + γdc,b − γbc,d) , (3)

we can then write Eq.(2) in a more concise form as

Dtφ̇a + 3Hφ̇a
+ γab∇bV = 0 (4)

The classical field φa
(t) can be combined into a composite scalar field φ0(t), whose velocity always

points in the tangent direction of the classical field trajectory. Such a composite field φ0(t) can be

defined through

φ̇2
0 ≡ γabφ̇

aφ̇b
. (5)

Taking a covariant derivative Dt on both sides of the above equation and using Eq.(4), we get

φ̈0 + 3Hφ̇0 +∇�V = 0 , (6)

with ∇�V the covariant derivative on the potential along the tangent direction of the classical path

∇�V ≡
φ̇a

φ̇0

∇aV .
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1 Turn rate:

1.2 Kinematic Basis

The metric γab can be locally diagonalized by a set of vielbeins eI
a,

eI
ae

J
b δIJ = γab , eI

ae
J
b γab

= δIJ .

In particular, it will be convenient to let two of the vielbeins to point in the tangent and normal

directions of the classical trajectory,

ea
ζ ≡

φ̇a

φ̇0

, ea
σ ≡

Dtea
ζ

|Dtea
ζ |

(7)

The rest of the vielbeins are collectively denoted by ea
s .

Since eI
ae

I
bγ

ab
= 1, by taking a covariant time derivative on both sides, we can show that eζ and eσ

are orthogonal by construction, i.e.,

(Dte
I
b)e

I
aγ

ab
= 0 . (8)

The set of vielbeins {ea
I} define a set of complete orthonormal basis in the field space spanned by

φa
. We have denoted the first two base vectors to be ea

ζ and ea
σ, and will denote the rest N −2 base

vectors orthogonal to eζ as ea
m, i.e. ea

I = {ea
ζ , e

a
σ, ea

m} (m = 1, 2, . . . , N − 2). The {a, b, . . . } indice

will be lowered and raised by γab
, and {I, J, . . . } ≡ {ζ, σ, m} indice will be contracted by δIJ

.

Another useful parameter is the turn rate θ̇ of the classical trajectory. We define

θ̇ = eσa(Dte
a
ζ ) . (9)

Using the classical equation of motion Eq.(4) and Eq.(6), we can relate θ̇ to the potential gradient

along the eσ direction, i.e.

θ̇ = −ea
σ∇aV

φ̇0

= −∇σV

φ̇0

. (10)
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σ∇aV can therefore be understood as the centripetal force to bend the classical trajectory.
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Mass Scales

• Mass scales tangent to classical trajectory:

• Mass scales transverse to classical trajectory: no 
bound due to            except for backreaction on 
ε:

rather weak! Heavy physics naively decoupled.

M� �
√

2�MP

φ̇⊥ = 0

M⊥
H

>>
θ̇

H

8



Quadratic Fluctuations

Turn rate:
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Here QI
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2Quantum quadratic action can be expressed in terms of 

The mass matrix mIJ = e
a
Ie

b
Jmab with mab given by

mab = Mab −
1

a3
Dt
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3φ̇2
0

H
e
ζ
ae

ζ
b

�
(14)

Here Mab includes the contribution from both the potential and the curvature of the field space

Mab ≡ ∇a∇bV + 2ḢRacdb e
c
ζe

d
ζ .

After switching to conformal time dτ ≡ dt/a, introducing the variable vI ≡ aQI , z ≡ aφ̇0/H and

performing some integration by part, we rewrite the action (11) in terms of vζ , vσ and vm’s.
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�
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1.4 Comparison with the Lagrangian from the Goldstone Method
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Since the π field is the Goldstone mode corresponding to the broken time-diff symmetry, and σI ’s

are perturbations from the extra light fields. We can establish the following relations
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Quadratic Fluctuations

Turn rate:

contains additional terms not present in the Goldstone approach of 
Senatore, Zaldarriaga. Imposing shift symmetries and high energy 
limit forbid many interesting contributions from turns in field space.

In conformal time & properly normalizing the fluctuations:
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c
ζe

d
ζ .

After switching to conformal time dτ ≡ dt/a, introducing the variable vI ≡ aQI , z ≡ aφ̇0/H and

performing some integration by part, we rewrite the action (11) in terms of vζ , vσ and vm’s.

L(2)
(ζ) =

1

2

�
v

�2
ζ − (∂vζ)

2
+

z
��

z
v

2
ζ

�
(15)

L(2)
(σ) =

1

2

�
v

�2
σ − (∂vσ)

2
+

�
a

��

a
− a

2
Mσσ + θ

�2 − a
2
Yσ

m
Ymσ

�
v

2
σ

�
(16)

L(2)
(m) =

1

2

�
v

�2
m − (∂vm)

2
+

�
a

��

a
δmn − a

2
Mmn + a

2
Y

I
mYIn

�
vmvn + 2aYmn(vnv

�
m − vmv

�
n)

�

(17)

L(2)
(ζ,σ) =

�
−2θ�

vσv
�
ζ + 2

z
�

z
θ�

vσvζ

�
(18)

L(2)
(σ,m) =

1

2

�
−a

2
Mσm + a

2
Y

I
σYIm

�
vσvm + aYσm(vmv

�
σ − vσv

�
m) (19)

1.4 Comparison with the Lagrangian from the Goldstone Method

Using the Goldstone approach [1, 2], Senatore & Zaldarriagaderived the quadratic action for the

perturbations

S
(2)
(π,σ) =

�
d

4
x a

3

�
(2M

4
2 −M

2
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Two Field Model3 Two Field Case

In the case of two fields, the quadratic action have two parts: the free field action plus the quadratic
interaction between the two modes vζ and vσ. Specifically, we have

L(2)
0 =

1
2

�
v
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ζ − (∂ivζ)2 +

z
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z
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�
(30)

L(2)
int = −2θ�vσv
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�

z
θ�vσvζ (31)

with Mσσ = Vσσ + �H2R.

Introducing parameters
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H
, (32)

we can expand z
��
/z as

z
��

z
= a

2
H

2(2− η� + �2 + 5� + 2�η − 2�2) , (33)

and similarly we have

a
��

a
− a

2
Mσσ + θ

�2 = a
2
H

2(2− �− η⊥ + �2) . (34)

Comparing L(2)
0 with the action of a free massive scalar field u in de-Sitter space,

L =
1
2

�
u

�2 − (∂u)2 + a
2
H

2

�
2− �− m

2

H2

�
u

2

�

we can read off the effective mass for vζ and vσ as

m
2
ζ = H

2(η� − �2 − 6�− 2�η + 2�2) , (35)

m
2
σ = H

2(η⊥ − �2) (36)

The physics of the two field system given by L(2)
0 +L(2)

int depends on how the magnitude of parameters
η�, η⊥ and � compare to 1. Generally speaking, we have the following scenarios.

(a) η� � 1, η⊥ � 1 and � � 1. This is two field inflation in the Slow-roll Slow-turn (SRST)
regime, which can be solved by treating L(2)

int as perturbations. The field vζ and vσ will evolve
according to the equation of motion derived from L(2)

0 . Due to the interaction between vζ and
vσ, the field vζ does not freeze after horizon exit. Whenever � �= 1, vσ will source the super-
horizon evolution of vζ . Such super-horizon evolution can be treated by solving for the transfer
functions between vζ and vσ [5, 6, 7] or by using the semi-classical δN formalism [8, 9, 10], and
it has been shown that the two approaches are equivalent [11].

6

General results simplified for models with two fields:

where

3 Two Field Case

In the case of two fields, the quadratic action have two parts: the free field action plus the quadratic
interaction between the two modes vζ and vσ. Specifically, we have

L(2)
0 =

1
2

�
v

�2
ζ − (∂ivζ)2 +

z
��

z
v

2
ζ

�
+

1
2

�
v

�2
σ − (∂ivσ)2 +

�
a
��

a
− a

2
Mσσ + θ

�2

�
v

2
σ

�
(30)

L(2)
int = −2θ�vσv

�
ζ + 2

z
�

z
θ�vσvζ (31)

with Mσσ = Vσσ + �H2R.

Introducing parameters

η� ≡
Vζζ

H2
, η⊥ ≡

Mσσ

H2
, � ≡ θ̇

H
, (32)

we can expand z
��
/z as

z
��

z
= a

2
H

2(2− η� + �2 + 5� + 2�η − 2�2) , (33)

and similarly we have

a
��

a
− a

2
Mσσ + θ

�2 = a
2
H

2(2− �− η⊥ + �2) . (34)

Comparing L(2)
0 with the action of a free massive scalar field u in de-Sitter space,

L =
1
2

�
u

�2 − (∂u)2 + a
2
H

2

�
2− �− m

2

H2

�
u

2

�

we can read off the effective mass for vζ and vσ as

m
2
ζ = H

2(η� − �2 − 6�− 2�η + 2�2) , (35)

m
2
σ = H

2(η⊥ − �2) (36)

The physics of the two field system given by L(2)
0 +L(2)

int depends on how the magnitude of parameters
η�, η⊥ and � compare to 1. Generally speaking, we have the following scenarios.

(a) η� � 1, η⊥ � 1 and � � 1. This is two field inflation in the Slow-roll Slow-turn (SRST)
regime, which can be solved by treating L(2)

int as perturbations. The field vζ and vσ will evolve
according to the equation of motion derived from L(2)

0 . Due to the interaction between vζ and
vσ, the field vζ does not freeze after horizon exit. Whenever � �= 1, vσ will source the super-
horizon evolution of vζ . Such super-horizon evolution can be treated by solving for the transfer
functions between vζ and vσ [5, 6, 7] or by using the semi-classical δN formalism [8, 9, 10], and
it has been shown that the two approaches are equivalent [11].

6

3 Two Field Case

In the case of two fields, the quadratic action have two parts: the free field action plus the quadratic
interaction between the two modes vζ and vσ. Specifically, we have

L(2)
0 =

1
2

�
v

�2
ζ − (∂ivζ)2 +

z
��

z
v

2
ζ

�
+

1
2

�
v

�2
σ − (∂ivσ)2 +

�
a
��

a
− a

2
Mσσ + θ

�2

�
v

2
σ

�
(30)

L(2)
int = −2θ�vσv

�
ζ + 2

z
�

z
θ�vσvζ (31)

with Mσσ = Vσσ + �H2R.

Introducing parameters

η� ≡
Vζζ

H2
, η⊥ ≡

Mσσ

H2
, � ≡ θ̇

H
, (32)

we can expand z
��
/z as

z
��

z
= a

2
H

2(2− η� + �2 + 5� + 2�η − 2�2) , (33)

and similarly we have

a
��

a
− a

2
Mσσ + θ

�2 = a
2
H

2(2− �− η⊥ + �2) . (34)

Comparing L(2)
0 with the action of a free massive scalar field u in de-Sitter space,

L =
1
2

�
u

�2 − (∂u)2 + a
2
H

2

�
2− �− m

2

H2

�
u

2

�

we can read off the effective mass for vζ and vσ as

m
2
ζ = H

2(η� − �2 − 6�− 2�η + 2�2) , (35)

m
2
σ = H

2(η⊥ − �2) (36)

The physics of the two field system given by L(2)
0 +L(2)

int depends on how the magnitude of parameters
η�, η⊥ and � compare to 1. Generally speaking, we have the following scenarios.

(a) η� � 1, η⊥ � 1 and � � 1. This is two field inflation in the Slow-roll Slow-turn (SRST)
regime, which can be solved by treating L(2)

int as perturbations. The field vζ and vσ will evolve
according to the equation of motion derived from L(2)

0 . Due to the interaction between vζ and
vσ, the field vζ does not freeze after horizon exit. Whenever � �= 1, vσ will source the super-
horizon evolution of vζ . Such super-horizon evolution can be treated by solving for the transfer
functions between vζ and vσ [5, 6, 7] or by using the semi-classical δN formalism [8, 9, 10], and
it has been shown that the two approaches are equivalent [11].

6

Define:

3 Two Field Case

In the case of two fields, the quadratic action have two parts: the free field action plus the quadratic
interaction between the two modes vζ and vσ. Specifically, we have

L(2)
0 =

1
2

�
v

�2
ζ − (∂ivζ)2 +

z
��

z
v

2
ζ

�
+

1
2

�
v

�2
σ − (∂ivσ)2 +

�
a
��

a
− a

2
Mσσ + θ

�2

�
v

2
σ

�
(30)

L(2)
int = −2θ�vσv

�
ζ + 2

z
�

z
θ�vσvζ (31)

with Mσσ = Vσσ + �H2R.

Introducing parameters

η� ≡
Vζζ

H2
, η⊥ ≡

Mσσ

H2
, � ≡ θ̇

H
, (32)

we can expand z
��
/z as

z
��

z
= a

2
H

2(2− η� + �2 + 5� + 2�η − 2�2) , (33)

and similarly we have

a
��

a
− a

2
Mσσ + θ

�2 = a
2
H

2(2− �− η⊥ + �2) . (34)

Comparing L(2)
0 with the action of a free massive scalar field u in de-Sitter space,

L =
1
2

�
u

�2 − (∂u)2 + a
2
H

2

�
2− �− m

2

H2

�
u

2

�

we can read off the effective mass for vζ and vσ as

m
2
ζ = H

2(η� − �2 − 6�− 2�η + 2�2) , (35)

m
2
σ = H

2(η⊥ − �2) (36)

The physics of the two field system given by L(2)
0 +L(2)

int depends on how the magnitude of parameters
η�, η⊥ and � compare to 1. Generally speaking, we have the following scenarios.

(a) η� � 1, η⊥ � 1 and � � 1. This is two field inflation in the Slow-roll Slow-turn (SRST)
regime, which can be solved by treating L(2)

int as perturbations. The field vζ and vσ will evolve
according to the equation of motion derived from L(2)

0 . Due to the interaction between vζ and
vσ, the field vζ does not freeze after horizon exit. Whenever � �= 1, vσ will source the super-
horizon evolution of vζ . Such super-horizon evolution can be treated by solving for the transfer
functions between vζ and vσ [5, 6, 7] or by using the semi-classical δN formalism [8, 9, 10], and
it has been shown that the two approaches are equivalent [11].

6

We can read off the “effective masses”, c.f.,
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Two Field Model3 Two Field Case

In the case of two fields, the quadratic action have two parts: the free field action plus the quadratic
interaction between the two modes vζ and vσ. Specifically, we have

L(2)
0 =

1
2

�
v

�2
ζ − (∂ivζ)2 +

z
��

z
v

2
ζ

�
+

1
2

�
v

�2
σ − (∂ivσ)2 +

�
a
��

a
− a

2
Mσσ + θ

�2

�
v

2
σ

�
(30)

L(2)
int = −2θ�vσv

�
ζ + 2

z
�

z
θ�vσvζ (31)

with Mσσ = Vσσ + �H2R.

Introducing parameters

η� ≡
Vζζ

H2
, η⊥ ≡

Mσσ

H2
, � ≡ θ̇

H
, (32)

we can expand z
��
/z as

z
��

z
= a

2
H

2(2− η� + �2 + 5� + 2�η − 2�2) , (33)

and similarly we have

a
��

a
− a

2
Mσσ + θ

�2 = a
2
H

2(2− �− η⊥ + �2) . (34)

Comparing L(2)
0 with the action of a free massive scalar field u in de-Sitter space,

L =
1
2

�
u

�2 − (∂u)2 + a
2
H

2

�
2− �− m

2

H2

�
u

2

�

we can read off the effective mass for vζ and vσ as

m
2
ζ = H

2(η� − �2 − 6�− 2�η + 2�2) , (35)

m
2
σ = H

2(η⊥ − �2) (36)

The physics of the two field system given by L(2)
0 +L(2)

int depends on how the magnitude of parameters
η�, η⊥ and � compare to 1. Generally speaking, we have the following scenarios.

(a) η� � 1, η⊥ � 1 and � � 1. This is two field inflation in the Slow-roll Slow-turn (SRST)
regime, which can be solved by treating L(2)

int as perturbations. The field vζ and vσ will evolve
according to the equation of motion derived from L(2)

0 . Due to the interaction between vζ and
vσ, the field vζ does not freeze after horizon exit. Whenever � �= 1, vσ will source the super-
horizon evolution of vζ . Such super-horizon evolution can be treated by solving for the transfer
functions between vζ and vσ [5, 6, 7] or by using the semi-classical δN formalism [8, 9, 10], and
it has been shown that the two approaches are equivalent [11].

6

General results simplified for models with two fields:

Effective masses:

3 Two Field Case

In the case of two fields, the quadratic action have two parts: the free field action plus the quadratic
interaction between the two modes vζ and vσ. Specifically, we have

L(2)
0 =

1
2

�
v

�2
ζ − (∂ivζ)2 +

z
��

z
v

2
ζ

�
+

1
2

�
v

�2
σ − (∂ivσ)2 +

�
a
��

a
− a

2
Mσσ + θ

�2

�
v

2
σ

�
(30)

L(2)
int = −2θ�vσv

�
ζ + 2

z
�

z
θ�vσvζ (31)

with Mσσ = Vσσ + �H2R.

Introducing parameters

η� ≡
Vζζ

H2
, η⊥ ≡

Mσσ

H2
, � ≡ θ̇

H
, (32)

we can expand z
��
/z as

z
��

z
= a

2
H

2(2− η� + �2 + 5� + 2�η − 2�2) , (33)

and similarly we have

a
��

a
− a

2
Mσσ + θ

�2 = a
2
H

2(2− �− η⊥ + �2) . (34)

Comparing L(2)
0 with the action of a free massive scalar field u in de-Sitter space,

L =
1
2

�
u

�2 − (∂u)2 + a
2
H

2

�
2− �− m

2

H2

�
u

2

�

we can read off the effective mass for vζ and vσ as

m
2
ζ = H

2(η� − �2 − 6�− 2�η + 2�2) , (35)

m
2
σ = H

2(η⊥ − �2) (36)

The physics of the two field system given by L(2)
0 +L(2)

int depends on how the magnitude of parameters
η�, η⊥ and � compare to 1. Generally speaking, we have the following scenarios.

(a) η� � 1, η⊥ � 1 and � � 1. This is two field inflation in the Slow-roll Slow-turn (SRST)
regime, which can be solved by treating L(2)

int as perturbations. The field vζ and vσ will evolve
according to the equation of motion derived from L(2)

0 . Due to the interaction between vζ and
vσ, the field vζ does not freeze after horizon exit. Whenever � �= 1, vσ will source the super-
horizon evolution of vζ . Such super-horizon evolution can be treated by solving for the transfer
functions between vζ and vσ [5, 6, 7] or by using the semi-classical δN formalism [8, 9, 10], and
it has been shown that the two approaches are equivalent [11].

6

Several scenarios have been considered: 
[Amendola, Gordon, Wands, Sasaki]; [Gordon, Wands, Bassett, Maartens]; 
[Peterson, Tegmark]; [Sasaki, Stewart]; [Venizzi, Wands]; [Meyers, Sivanandam]; 
[Garcia-Bellido, Wands];[Chen, Wang]; [Achucarro, Gong, Hardeman, Palma, 
Patil];[Cremonini, Lalak, Turzynski];[Baumann,Green]; ...
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Two Field Model
I) Slow-roll Slow-turn (SRST): 

Transfer functions: [Amendola, Gordon, Wands, Sasaki]; [Gordon, Wands, 
Bassett, Maartens]; [Peterson, Tegmark]

3 Two Field Case

In the case of two fields, the quadratic action have two parts: the free field action plus the quadratic
interaction between the two modes vζ and vσ. Specifically, we have

L(2)
0 =

1
2

�
v

�2
ζ − (∂ivζ)2 +

z
��

z
v

2
ζ

�
+

1
2

�
v

�2
σ − (∂ivσ)2 +

�
a
��

a
− a

2
Mσσ + θ

�2

�
v

2
σ

�
(30)

L(2)
int = −2θ�vσv

�
ζ + 2

z
�

z
θ�vσvζ (31)

with Mσσ = Vσσ + �H2R.

Introducing parameters

η� ≡
Vζζ

H2
, η⊥ ≡

Mσσ

H2
, � ≡ θ̇

H
, (32)

we can expand z
��
/z as

z
��

z
= a

2
H

2(2− η� + �2 + 5� + 2�η − 2�2) , (33)

and similarly we have

a
��

a
− a

2
Mσσ + θ

�2 = a
2
H

2(2− �− η⊥ + �2) . (34)

Comparing L(2)
0 with the action of a free massive scalar field u in de-Sitter space,

L =
1
2

�
u

�2 − (∂u)2 + a
2
H

2

�
2− �− m

2

H2

�
u

2

�

we can read off the effective mass for vζ and vσ as

m
2
ζ = H

2(η� − �2 − 6�− 2�η + 2�2) , (35)

m
2
σ = H

2(η⊥ − �2) (36)

The physics of the two field system given by L(2)
0 +L(2)

int depends on how the magnitude of parameters
η�, η⊥ and � compare to 1. Generally speaking, we have the following scenarios.

(a) η� � 1, η⊥ � 1 and � � 1. This is two field inflation in the Slow-roll Slow-turn (SRST)
regime, which can be solved by treating L(2)

int as perturbations. The field vζ and vσ will evolve
according to the equation of motion derived from L(2)

0 . Due to the interaction between vζ and
vσ, the field vζ does not freeze after horizon exit. Whenever � �= 1, vσ will source the super-
horizon evolution of vζ . Such super-horizon evolution can be treated by solving for the transfer
functions between vζ and vσ [5, 6, 7] or by using the semi-classical δN formalism [8, 9, 10], and
it has been shown that the two approaches are equivalent [11].

6

Two light fields, but can treat the interaction as perturbations

δN formalism: [Sasaki, Stewart]; [Venizzi, Wands]; [Meyers, Sivanandam]

The two approaches are equivalent [Garcia-Bellido, Wands]

νσ sources superhorizon evolution of νζ
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Two Field Model
II) Quasi-single field:                                    [Chen, Wang]

A massive field which is critically damped, hence will 
decay (but slowly) after horizon exit.

(b) η� � 1, η⊥ ∼ 1 and � � 1. This is the quasi-single field scenario studied in Ref.[12]. Unlike

scenario (a), one has a massive field vσ with mσ ∼ H which is critically damped and will decay

after horizon exit. Since vσ is not the inflaton field, it can have large self-interactions, which can

mediate interactions among vζ through L(2)
int . Since �� 1, we can still treat L(2)

int perturbatively

by introducing transfer vertexes between vζ and vσ. It is also important that η⊥ ∼ 1 but not

� 1, so that the decay of vσ is slow enough for L(2)
int to play its role.

(c) η� � 1, η⊥ � 1. By conventional wisdom, this scenario is should be well described as single

field inflation. The heavy field vσ quickly decays and settles at the minimum of its potential,

and the light field vζ will undergo the usual horizon exit process as in single field inflation.

In Ref.[13], it was found that after integrating out the heavy mode vσ, the resulting effective

single field action exhibits an effective sound speed. In our notation
1
,

c
−2
s ≈ 1 +

4�2

η⊥ − �2 − 2 + k2/(a2H2)
. (37)

If �2
> η⊥ � 1, the effective sound speed will be superluminal or even ill-defined for modes

with k < aH

�
�2 − η⊥, suggesting a break down of the single field description in the low-energy

limit.

From Eq.(35) and (36), we see that if �2 � η⊥ � η�, one actually get m
2
ζ ∼ m

2
σ ∼ −�2

H
2

and

therefore there is not a mass hierarchy between the two fields. Furthermore, with � � 1, vζ

and vσ become strongly coupled, and one should use the full quadratic action L(2)
0 + L(2)

int to

derive their equation of motion [14].

In Ref.[15], the authors investigated the problem from a different perspective. It was shown

that when the single field effective action has a small sound speed, the inflaton may become

strongly coupled [16]. Ref.[15] suggested that one approach to deal with the strong coupling

problem is to integrate in a second massive field to UV-complete the effective single field theory.

The UV completed action can be interpreted as the two field action presented here. Ref.[15]

looked at a regime with �� 1. By going to the low energy limit, k/aH � �2
, one can ignore

the usual time derivative terms in L(2)
0 and the term v

�
ζvσ in L(2)

int becomes the non-relativistic

kinetic action of the system. This is equivalent to studying the super-horizon evolution of a

generic two field inflation model.

Following Ref.[15], the relevant terms in the action are now

L̃(2)
= −2θ�vσv

�
ζ −

1

2
(∂ivζ)

2 − 1

2
(∂ivσ)

2

+a
2
H

2

�
2− �−

m
2
ζ

H2

�
v

2
ζ + a

2
H

2

�
2− �− m

2
σ

H2

�
+ 2

z
�

z
θ�vσvζ . (38)

Note that Ref.[15] followed the Goldstone approach in Ref.[2] so that in the effective multi-field

action, the mζ term and the vζvσ term were not allowed by shift symmetry. They also took

the decoupling limit � → 0. Here we are not constrained by shift symmetry and we do not

decouple gravity, so all those terms are allowed.

1Note that our η⊥ is M
2
/H

2 in Ref.[13] and our � is η⊥ in Ref.[13]
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Interaction part      can still be treated as perturbations.

Massive field can have large self-interactions which can 
mediate interaction among the light field through 

3 Two Field Case

In the case of two fields, the quadratic action have two parts: the free field action plus the quadratic
interaction between the two modes vζ and vσ. Specifically, we have
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0 =
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�2
ζ − (∂ivζ)2 +

z
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v

2
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2
σ
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(30)

L(2)
int = −2θ�vσv

�
ζ + 2

z
�

z
θ�vσvζ (31)

with Mσσ = Vσσ + �H2R.

Introducing parameters

η� ≡
Vζζ

H2
, η⊥ ≡

Mσσ

H2
, � ≡ θ̇

H
, (32)

we can expand z
��
/z as

z
��

z
= a

2
H

2(2− η� + �2 + 5� + 2�η − 2�2) , (33)

and similarly we have

a
��

a
− a

2
Mσσ + θ

�2 = a
2
H

2(2− �− η⊥ + �2) . (34)

Comparing L(2)
0 with the action of a free massive scalar field u in de-Sitter space,

L =
1
2

�
u

�2 − (∂u)2 + a
2
H

2

�
2− �− m

2

H2

�
u

2

�

we can read off the effective mass for vζ and vσ as

m
2
ζ = H

2(η� − �2 − 6�− 2�η + 2�2) , (35)

m
2
σ = H

2(η⊥ − �2) (36)

The physics of the two field system given by L(2)
0 +L(2)

int depends on how the magnitude of parameters
η�, η⊥ and � compare to 1. Generally speaking, we have the following scenarios.

(a) η� � 1, η⊥ � 1 and � � 1. This is two field inflation in the Slow-roll Slow-turn (SRST)
regime, which can be solved by treating L(2)

int as perturbations. The field vζ and vσ will evolve
according to the equation of motion derived from L(2)

0 . Due to the interaction between vζ and
vσ, the field vζ does not freeze after horizon exit. Whenever � �= 1, vσ will source the super-
horizon evolution of vζ . Such super-horizon evolution can be treated by solving for the transfer
functions between vζ and vσ [5, 6, 7] or by using the semi-classical δN formalism [8, 9, 10], and
it has been shown that the two approaches are equivalent [11].

6

3 Two Field Case

In the case of two fields, the quadratic action have two parts: the free field action plus the quadratic
interaction between the two modes vζ and vσ. Specifically, we have
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0 =
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ζ − (∂ivζ)2 +
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(30)

L(2)
int = −2θ�vσv
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ζ + 2
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θ�vσvζ (31)

with Mσσ = Vσσ + �H2R.

Introducing parameters

η� ≡
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, � ≡ θ̇

H
, (32)

we can expand z
��
/z as

z
��

z
= a

2
H

2(2− η� + �2 + 5� + 2�η − 2�2) , (33)

and similarly we have

a
��

a
− a

2
Mσσ + θ

�2 = a
2
H

2(2− �− η⊥ + �2) . (34)

Comparing L(2)
0 with the action of a free massive scalar field u in de-Sitter space,

L =
1
2

�
u

�2 − (∂u)2 + a
2
H

2

�
2− �− m

2

H2

�
u

2

�

we can read off the effective mass for vζ and vσ as

m
2
ζ = H

2(η� − �2 − 6�− 2�η + 2�2) , (35)

m
2
σ = H

2(η⊥ − �2) (36)

The physics of the two field system given by L(2)
0 +L(2)

int depends on how the magnitude of parameters
η�, η⊥ and � compare to 1. Generally speaking, we have the following scenarios.

(a) η� � 1, η⊥ � 1 and � � 1. This is two field inflation in the Slow-roll Slow-turn (SRST)
regime, which can be solved by treating L(2)

int as perturbations. The field vζ and vσ will evolve
according to the equation of motion derived from L(2)

0 . Due to the interaction between vζ and
vσ, the field vζ does not freeze after horizon exit. Whenever � �= 1, vσ will source the super-
horizon evolution of vζ . Such super-horizon evolution can be treated by solving for the transfer
functions between vζ and vσ [5, 6, 7] or by using the semi-classical δN formalism [8, 9, 10], and
it has been shown that the two approaches are equivalent [11].

6
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Two Field Model
III) Effective Single-Field Limit 

Conventional Wisdom: effectively a single field model

Turn in field space introduces interesting features:

(b) η� � 1, η⊥ ∼ 1 and � � 1. This is the quasi-single field scenario studied in Ref.[12]. Unlike

scenario (a), one has a massive field vσ with mσ ∼ H which is critically damped and will decay

after horizon exit. Since vσ is not the inflaton field, it can have large self-interactions, which can

mediate interactions among vζ through L(2)
int . Since �� 1, we can still treat L(2)

int perturbatively

by introducing transfer vertexes between vζ and vσ. It is also important that η⊥ ∼ 1 but not

� 1, so that the decay of vσ is slow enough for L(2)
int to play its role.

(c) η� � 1, η⊥ � 1. By conventional wisdom, this scenario is should be well described as single

field inflation. The heavy field vσ quickly decays and settles at the minimum of its potential,

and the light field vζ will undergo the usual horizon exit process as in single field inflation.

In Ref.[13], it was found that after integrating out the heavy mode vσ, the resulting effective

single field action exhibits an effective sound speed. In our notation
1
,

c
−2
s ≈ 1 +

4�2

η⊥ − �2 − 2 + k2/(a2H2)
. (37)

If �2
> η⊥ � 1, the effective sound speed will be superluminal or even ill-defined for modes

with k < aH

�
�2 − η⊥, suggesting a break down of the single field description in the low-energy

limit.

From Eq.(35) and (36), we see that if �2 � η⊥ � η�, one actually get m
2
ζ ∼ m

2
σ ∼ −�2

H
2

and

therefore there is not a mass hierarchy between the two fields. Furthermore, with � � 1, vζ

and vσ become strongly coupled, and one should use the full quadratic action L(2)
0 + L(2)

int to

derive their equation of motion [14].

In Ref.[15], the authors investigated the problem from a different perspective. It was shown

that when the single field effective action has a small sound speed, the inflaton may become

strongly coupled [16]. Ref.[15] suggested that one approach to deal with the strong coupling

problem is to integrate in a second massive field to UV-complete the effective single field theory.

The UV completed action can be interpreted as the two field action presented here. Ref.[15]

looked at a regime with �� 1. By going to the low energy limit, k/aH � �2
, one can ignore

the usual time derivative terms in L(2)
0 and the term v

�
ζvσ in L(2)

int becomes the non-relativistic

kinetic action of the system. This is equivalent to studying the super-horizon evolution of a

generic two field inflation model.

Following Ref.[15], the relevant terms in the action are now

L̃(2)
= −2θ�vσv

�
ζ −

1

2
(∂ivζ)

2 − 1

2
(∂ivσ)

2

+a
2
H

2

�
2− �−

m
2
ζ

H2

�
v

2
ζ + a

2
H

2

�
2− �− m

2
σ

H2

�
+ 2

z
�

z
θ�vσvζ . (38)

Note that Ref.[15] followed the Goldstone approach in Ref.[2] so that in the effective multi-field

action, the mζ term and the vζvσ term were not allowed by shift symmetry. They also took

the decoupling limit � → 0. Here we are not constrained by shift symmetry and we do not

decouple gravity, so all those terms are allowed.

1Note that our η⊥ is M
2
/H

2 in Ref.[13] and our � is η⊥ in Ref.[13]
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0 and the term v

�
ζvσ in L(2)

int becomes the non-relativistic

kinetic action of the system. This is equivalent to studying the super-horizon evolution of a

generic two field inflation model.

Following Ref.[15], the relevant terms in the action are now

L̃(2)
= −2θ�vσv

�
ζ −

1

2
(∂ivζ)

2 − 1

2
(∂ivσ)

2

+a
2
H

2

�
2− �−

m
2
ζ

H2

�
v

2
ζ + a

2
H

2

�
2− �− m

2
σ

H2

�
+ 2

z
�

z
θ�vσvζ . (38)

Note that Ref.[15] followed the Goldstone approach in Ref.[2] so that in the effective multi-field
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Sound speed is ill-defined when:

In this limit, masses are comparable; also      is significant, need
to solve EOM of full quadratic action

3 Two Field Case

In the case of two fields, the quadratic action have two parts: the free field action plus the quadratic
interaction between the two modes vζ and vσ. Specifically, we have

L(2)
0 =

1
2

�
v

�2
ζ − (∂ivζ)2 +

z
��

z
v

2
ζ

�
+

1
2

�
v

�2
σ − (∂ivσ)2 +

�
a
��

a
− a

2
Mσσ + θ

�2

�
v

2
σ

�
(30)

L(2)
int = −2θ�vσv
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ζ + 2

z
�

z
θ�vσvζ (31)

with Mσσ = Vσσ + �H2R.

Introducing parameters
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Vζζ

H2
, η⊥ ≡

Mσσ
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, (32)
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2
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Comparing L(2)
0 with the action of a free massive scalar field u in de-Sitter space,

L =
1
2
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�2 − (∂u)2 + a
2
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�

we can read off the effective mass for vζ and vσ as

m
2
ζ = H

2(η� − �2 − 6�− 2�η + 2�2) , (35)

m
2
σ = H

2(η⊥ − �2) (36)

The physics of the two field system given by L(2)
0 +L(2)

int depends on how the magnitude of parameters
η�, η⊥ and � compare to 1. Generally speaking, we have the following scenarios.

(a) η� � 1, η⊥ � 1 and � � 1. This is two field inflation in the Slow-roll Slow-turn (SRST)
regime, which can be solved by treating L(2)

int as perturbations. The field vζ and vσ will evolve
according to the equation of motion derived from L(2)

0 . Due to the interaction between vζ and
vσ, the field vζ does not freeze after horizon exit. Whenever � �= 1, vσ will source the super-
horizon evolution of vζ . Such super-horizon evolution can be treated by solving for the transfer
functions between vζ and vσ [5, 6, 7] or by using the semi-classical δN formalism [8, 9, 10], and
it has been shown that the two approaches are equivalent [11].

6

Strong coupling scale for theories with a small sound speed.

�2 > η⊥ >> 1
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Sharp Turn in Two-Field Model
e.g., features in the potential or momentarily large kinetic mixing 

For the backreaction of the turn to be small:

Momentarily large ρ leads to (i) sudden change in masses, (ii) 
projection of perturbations along σ to the inflation direction.

We focus on the effects of sharp turn

Subsequent oscillations of the massive 
field recently studied by Chen (trigger 
resonant non-Gaussianity). 

η⊥ > ρ2
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Sharp Turn in Two-Field Model
modes before and after the sharp turn

vζ

���
x0+

x0−
= 0 , (42)

dvζ

dx

���
x0+

x0−
=

�2
m

x
2
0

vζ

���
x0

+
2�m

x
2
0

vσ

���
x0

, (43)

vσ

���
x0+

x0−
= 0 , (44)

dvσ

dx

���
x0+

x0−
=

�2
m

x
2
0

vσ

���
x0

+
4�m

x
2
0

vζ

���
x0

. (45)

vζ is a massless scalar field in de-Sitter space before and after the turn, so we have

vζ(x < x0) = v
+
(k, τ) , (46)

vζ(x > x0) = C1v
+
(k, τ) + C2v

−
(k, τ) , (47)

v
±
(k, τ) =

−1√
2k

e
∓ix

�
1

x
± i

�
. (48)

C1 and C2 can be solved by matching the boundary conditions at x0.

C1 =

�
1 + i

A

2
+ i

A

2x
2
0

�
− B

2
vσ(x0)e

ix0

�
1 +

i

x0

�
(49)

C2 = i
A

2
e
−2ix0

�
1− i

x0

�2

− B

2
vσ(x0)e

−ix0

�
1− i

x0

�
(50)

with parameters A and B given by

A ≡ �2
m

x
2
0

B ≡
√

2k
2�m

x
2
0

The power spectrum is given by

Pζ =
k

3

2π2

����
vζ

a
√

2�

����
2

x→0

=
H

2

8π2�
|C1 + C2|2 (51)

So we have seen that the function |C1 + C2|2 encodes all the features generated by the sharp turn.

(Q: can it be identified with c
−1
s ?)
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The EOMs for the coupled system are:

Momentary turn: 

Matching b.c.:

gives:

Figure 1: Illustration of a sharp turn in the field space. The green dashed line represents the massless field

(inflaton) direction, and the massive field is orthogonal to the green dashed line. Along the blue part of the

trajectory, the kinetic energy of the inflaton is gradually transformed into the potential energy of the massive

field. At the end of the blue line, the potential enegry starts to convert back to the kinetic energy, and caused

subsequent oscillations of the massive field along the transverse direction (red curve). The dynamics along

the red curve can be mimicked by a single field potential with periodic features. The perturbations in the

massive field is projected into the inflaton direction at the interface between the blue and red curve, and

this is the effect we focus on in this paper.

In Ref.[13], the authors studied the effect of sharp turn due to kinetic mixing. However, the effective

field theory approach in their work requires that the heavy field lies in the adiabatic minimum of

its potential which is generically not tru if the turn is very sharp. The full two field analysis we

perform here is more suitable in dealing with sharp turns.

In Ref.[14], the strongly coupled two field system was studied numerically. Here we show that if

the coupling � is momentary large, i.e. the time scale of change in � is much shorter than the

oscillation time scale of vζ and vσ, we can obtain the mode functions analytically.

Let us start by writing down the mode equations for vζ and vσ derived from the full quadratic

Lagrangian L(2)
0 + L(2)

int . Introducing the new variable x ≡ kτ , the equations can be written as

d
2
vζ

dx2
+

�
1− 2

x2

�
vζ −

2�

x2
vσ +

d

dx

�
2�

x
vσ

�
= 0 (42)

d
2
vσ

dx2
+

�
1− 2− η⊥ + �2

x2

�
vσ −

4�

x2
vζ −

d

dx

�
2�

x
vζ

�
= 0 (43)

We have assumed m
2
ζ � H

2
during the sharp turn. m

2
ζ can become large after the turn is completed

(at the beginning of the red curve in Fig.1), and one can include its effect seperately. Here as we

explained earlier, we will only focus on the sharp turn.

We approximate the momentarily large turn rate as a delta function,

� =
θ̇

H
=

∆θ

H
δ(t− t0) = ∆θ x0 δ(x− x0) . (44)
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Matching the mode fucntions before and after the sharp turn, we get

vζ

���
x0+

x0−
= 0 , (45)

dvζ

dx

���
x0+

x0−
=

2∆θ

x0
vσ

���
x0

, (46)

vσ

���
x0+

x0−
= 0 , (47)

dvσ

dx

���
x0+

x0−
= (∆θ)2vσ

���
x0

+
4∆θ

x0
vζ

���
x0

. (48)

vζ is a massless scalar field in de-Sitter space before and after the turn, so we have

vζ(x < x0) = v
+(k, τ) , (49)

vζ(x > x0) = C1v
+(k, τ) + C2v

−(k, τ) , (50)

v
±(k, τ) =

−1√
2k

e
∓ix

�
1
x
± i

�
. (51)

C1 and C2 can be solved by matching the boundary conditions at x0.

C1 = 1− ∆θ

x0
e
ix0

�
1 +

i

x0

�√
2kvσ(x0) , (52)

C2 = −∆θ

x0
e
−ix0

�
1− i

x0

�√
2kvσ(x0) . (53)

The power spectrum is given by

Pζ =
k

3

2π2

����
vζ

a
√

2�

����
2

x→0

=
H

2

8π2�
|C1 + C2|2 (54)

The factor |C1 + C2|2 encodes all the features in the 2-point function generated by the sharp turn.
The full expression of |C1 + C2|2 is quite complicated, as it involves the value of the massive mode
function at the time of the sharp turn vσ(x0). In the small x0 limit, the massive mode function
decays and we expect

|C1 + C2|→ 1 , x0 → 0 . (55)

In the large x0 limit with x0 � ∆θ and x0 � η⊥, we have vσ(x0) ∼ e
−ix0 . To leading order in

∆θ/x0, we can express

|C1 + C2|2 ≈ 1 + 2∆θ
sin(2x0)

x0
, x0 � ∆θ, η⊥ (56)

We see that for x0 � 1, which corresponds to modes inside the horizon at the time of the sharp
turn, the projection of massive field perturbations into the inflaton direction generates sinusodial
ripples on the power spectrum. The level of such oscillations depends on the turning angle ∆θ
and is suppressed by 1/x0. It is interesting that even if the sharp turn happens before 60 efolds
from the end of inflation, it may still leave some features in the power spectrum. The chances of
detecting such small oscillations in the power spectrum may be small, so we will have to look at
the bi-spectrum to search for correlated signatures.
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Power Spectrum

modes before and after the sharp turn
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vζ is a massless scalar field in de-Sitter space before and after the turn, so we have
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with parameters A and B given by

A ≡ �2
m

x
2
0

B ≡
√

2k
2�m

x
2
0

The power spectrum is given by

Pζ =
k

3

2π2

����
vζ

a
√

2�

����
2

x→0

=
H

2

8π2�
|C1 + C2|2 (51)

So we have seen that the function |C1 + C2|2 encodes all the features generated by the sharp turn.

(Q: can it be identified with c
−1
s ?)

References

[1] C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan and L. Senatore, “The Effective Field

Theory of Inflation,” JHEP 0803, 014 (2008) [arXiv:0709.0293 [hep-th]].

[2] L. Senatore and M. Zaldarriaga, “The Effective Field Theory of Multifield Inflation,”

arXiv:1009.2093 [hep-th].

9

Similar to initial state effect on inflationary spectrum:

not only a change in sound speed!

Matching the mode fucntions before and after the sharp turn, we get

vζ

���
x0+

x0−
= 0 , (45)

dvζ

dx

���
x0+

x0−
=

2∆θ

x0
vσ

���
x0

, (46)

vσ

���
x0+

x0−
= 0 , (47)

dvσ

dx

���
x0+

x0−
= (∆θ)2vσ

���
x0

+
4∆θ

x0
vζ

���
x0

. (48)

vζ is a massless scalar field in de-Sitter space before and after the turn, so we have

vζ(x < x0) = v
+(k, τ) , (49)

vζ(x > x0) = C1v
+(k, τ) + C2v

−(k, τ) , (50)

v
±(k, τ) =

−1√
2k

e
∓ix

�
1
x
± i

�
. (51)

C1 and C2 can be solved by matching the boundary conditions at x0.

C1 = 1− ∆θ

x0
e
ix0

�
1 +

i

x0

�√
2kvσ(x0) , (52)

C2 = −∆θ

x0
e
−ix0

�
1− i

x0

�√
2kvσ(x0) . (53)

The power spectrum is given by

Pζ =
k

3

2π2

����
vζ

a
√

2�

����
2

x→0

=
H

2

8π2�
|C1 + C2|2 (54)

The factor |C1 + C2|2 encodes all the features in the 2-point function generated by the sharp turn.
The full expression of |C1 + C2|2 is quite complicated, as it involves the value of the massive mode
function at the time of the sharp turn vσ(x0). In the small x0 limit, the massive mode function
decays and we expect

|C1 + C2|→ 1 , x0 → 0 . (55)

In the large x0 limit with x0 � ∆θ and x0 � η⊥, we have vσ(x0) ∼ e
−ix0 . To leading order in

∆θ/x0, we can express

|C1 + C2|2 ≈ 1 + 2∆θ
sin(2x0)

x0
, x0 � ∆θ, η⊥ (56)

We see that for x0 � 1, which corresponds to modes inside the horizon at the time of the sharp
turn, the projection of massive field perturbations into the inflaton direction generates sinusodial
ripples on the power spectrum. The level of such oscillations depends on the turning angle ∆θ
and is suppressed by 1/x0. It is interesting that even if the sharp turn happens before 60 efolds
from the end of inflation, it may still leave some features in the power spectrum. The chances of
detecting such small oscillations in the power spectrum may be small, so we will have to look at
the bi-spectrum to search for correlated signatures.
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In the small x0 limit:

In the large x0 limit:

Matching the mode fucntions before and after the sharp turn, we get

vζ

���
x0+

x0−
= 0 , (45)

dvζ

dx

���
x0+

x0−
=

2∆θ

x0
vσ

���
x0

, (46)

vσ

���
x0+

x0−
= 0 , (47)

dvσ

dx

���
x0+

x0−
= (∆θ)2vσ

���
x0

+
4∆θ

x0
vζ

���
x0

. (48)

vζ is a massless scalar field in de-Sitter space before and after the turn, so we have

vζ(x < x0) = v
+(k, τ) , (49)

vζ(x > x0) = C1v
+(k, τ) + C2v

−(k, τ) , (50)

v
±(k, τ) =

−1√
2k

e
∓ix

�
1
x
± i

�
. (51)

C1 and C2 can be solved by matching the boundary conditions at x0.

C1 = 1− ∆θ

x0
e
ix0

�
1 +

i

x0

�√
2kvσ(x0) , (52)

C2 = −∆θ

x0
e
−ix0

�
1− i

x0

�√
2kvσ(x0) . (53)

The power spectrum is given by

Pζ =
k

3

2π2

����
vζ

a
√

2�

����
2

x→0

=
H

2

8π2�
|C1 + C2|2 (54)

The factor |C1 + C2|2 encodes all the features in the 2-point function generated by the sharp turn.
The full expression of |C1 + C2|2 is quite complicated, as it involves the value of the massive mode
function at the time of the sharp turn vσ(x0). In the small x0 limit, the massive mode function
decays and we expect

|C1 + C2|→ 1 , x0 → 0 . (55)

In the large x0 limit with x0 � ∆θ and x0 � η⊥, we have vσ(x0) ∼ e
−ix0 . To leading order in

∆θ/x0, we can express

|C1 + C2|2 ≈ 1 + 2∆θ
sin(2x0)

x0
, x0 � ∆θ, η⊥ (56)

We see that for x0 � 1, which corresponds to modes inside the horizon at the time of the sharp
turn, the projection of massive field perturbations into the inflaton direction generates sinusodial
ripples on the power spectrum. The level of such oscillations depends on the turning angle ∆θ
and is suppressed by 1/x0. It is interesting that even if the sharp turn happens before 60 efolds
from the end of inflation, it may still leave some features in the power spectrum. The chances of
detecting such small oscillations in the power spectrum may be small, so we will have to look at
the bi-spectrum to search for correlated signatures.
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even the sharp turn happens more than 60e-folds before 
inflation ends, it may still leave an imprint.
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3-point functions

• Following the standard method:

• Consider a simple interaction vertex

• Non Bunch-Davis correction: flip the sign of one of the 
momentum,  with overall factor

�ζ3� = −i

�
dt�[ζ3

, HI(t)]�

ζ(k, τ) ≡ vζ(k, τ)
a
√

2�
= u(k, τ)ak + u∗(−k, τ)a†−k

HI = −
�

dx
3
a
3�2ζζ �2

�ζ3� = i(uk1uk2uk3)|τ=0

� 0

−∞
dτ a2�2 u∗k1

(τ)
u∗k2

(τ)
dτ

u∗k3
(τ)

dτ
. . .

|C2|2

fNL ∼ O(�)|C2|
2 peaked in the folded limit k1 + k2 = k3
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3-point functions

• Generically the signal in 3-pt function is small oscillation 
in the power spectrum ~ 

• After the turn, the massive field is generically oscillating   
⇒ resonant enhancement of 3-point function                        

[Chen, Easther, Lim (2008)] [Chen 2011] 

|C2| � 0.1

fNL ∼ O(�)|C2|
2 ∼ 10−4

HI = −
�

dτdx
3 1
2
a
2�η̇ ζ2ζ �

K̃i = K − 2ki

The corresponding change in z = a
√

2� is given by

z → z0

�
1 +

β

2
Θ(τ − τ0)

�
,

Therefore,
z
��

z
=

β

2
d
dτ

δ(τ − τ0) + aHβδ(τ − τ0) + . . . . (40)

We see that the singular terms in z
��
/z or mζ is of magnitude β.

On the other hand, energy conservation gives

1
2
βφ̇2

0 = ∆V =
1
2
(1− β)φ̇2

0
θ̇2

M2
σ

(41)

θ̇2

H2
=

β

1− β

M
2
σ

H2
≈ β

M
2
σ

H2
(42)

For our purpose, we choose

β � 1 , Mσ � H , β
M

2
σ

H2
� 1 ,

therefore, the features arising in z
��
/z is sub-leading, and we can ignore them in the following

analysis, and focusing only on the effects generated by the strong coupling between vζ and vσ.
Such effect is genuinely due to the multifield nature of the model, which is hard to be mimicked
in the single field scenario. The effect we discuss here precedes the resonant effect discussed in
Ref.[20].

In Ref.[14], the authors studied the effect of sharp turn due to kinetic mixing. However, the effective
single field theory approach in their work requires that the heavy field lies in the adiabatic minimum
of its potential. We have seen that this assumption generically does not hold when a sharp turn
happens, especially when it excites massive field oscillations. Therefore we will perform a full two
field analysis in dealing with the sharp turn.

In Ref.[15], the strongly coupled two field system was studied numerically. Here we show that if
the coupling � is momentary large, i.e. the time scale of change in � is much shorter than the
oscillation time scale of vζ and vσ, we can obtain the mode functions analytically.

Let us start by writing down the mode equations for vζ and vσ derived from the full quadratic
Lagrangian L(2)

0 + L(2)
int . Introducing the new variable x ≡ kτ , the equations can be written as

d2
vζ

dx2
+

�
1− 2

x2

�
vζ −

2�

x2
vσ +

d
dx

�
2�

x
vσ

�
= 0 (43)

d2
vσ

dx2
+

�
1− 2− η⊥ + �2

x2

�
vσ −

4�

x2
vζ −

d
dx

�
2�

x
vζ

�
= 0 (44)

We approximate the momentarily large turn rate as a delta function,

� =
θ̇

H
=

∆θ

H
δ(t− t0) = ∆θ x0 δ(x− x0) . (45)
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This effect of non Bunch-Davis component on fNL was previous studied in Ref.[22, 23]. Here we

have provided one microscopic origin of such an non Bunch-Davis component — the sharp turn in

multifield inflation.

However, observationally, fNL ∼ �|C2|
2

is very hard to detect. Since the oscillation in the power

spectrum is controlled by |C2|. Based on current observational data, assume that the amount of

oscillation in the un-binned data is about � 10% [24] and take � ∼ 0.01, we get negligibly small

fNL on the order of 10
−4

.

When the scalar field makes a sharp turn, it is very likely the massive field will oscillate after the

turn, as we have discussed in Sec.4.1. We ignored such effects in computing the 2-pt function,

however, such oscillations will be important in amplifying the 3-pt function, through the resonant

mechanism discussed in Ref.[19, 20]. The vertex responsible for the resonant non-G is

HI = −
�

dτdx
3 1

2
a

2�η̇ ζ2ζ � . (62)

In usual slow roll limit, such term is sub-leading as �η̇ ∼ O(�3). However, in a time dependent

oscillating background with

η̇ = (η̇)0 + (η̇)A sin ωt , ω � H . (63)

we will have resonance enhanced non-Gaussianity

f
res
NL =

(η̇)A

H

� ω

H

�1/2
√

π

8
√

2
sin

� ω

H
lnK + φ

�
, K = k1 + k2 + k3 . (64)

Here φ is a phase independent of k. Note that the enhancement of fNL comes from ω � H.

The oscillation in η̇ is sourced my the massive field oscillation, which according to Ref.[20] gives

(η̇)A

H
= β

M
2
σ

H2
, ω = 2Mσ .

With a sharp turn introducing the non Bunch-Davis component, we replace K by K̃i ≡ K − 2ki

and multiply fNL by |C2|
2
. Therefore, for ki > k0, the asymptotic form of fNL is

f
res
NL|non BD ∼

√
π

8
β

�
Mσ

H

�5/2 �
∆θ

k0

k1

�2

sin

�
2Mσ

H
ln K̃1 + φ

�
+ perm . (65)

Resonant enhancement of 3-point function has been considered in various scenarios for Bunch-Davis

state [19, 20, 25]. Generically, they give signatures running in k space according to

f
res
NL|BD ∼ sin

� ω

H
lnK + phase

�

For resonance in the non Bunch Davis components, the running is along the K̃i directions,

f
res
NL|non BD ∼ sin

� ω

H
ln K̃1 + phase

�
+ perm .
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3-point functions

• Comparing with result based on Bunch-Davis state

• A new origin of non BD component - Sharp turn
c.f. [Chen 2010] 

• Role of the massive field:

❖ Provides non BD component through sharp turn

❖ Provides oscillating time dependent background to 
trigger resonant effect

f
res
NL|BD ∼ sin

� ω

H
lnK + phase

�

f
res
NL|non BD ∼ sin

� ω

H
ln K̃i + phase

�
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3-point functions

• If the inflaton action is p(X)

Effects further enhanced by the small sound speed!

HI = −
�

dτdx
3 a�

Hc2
s

�
1
c2
s

− 1− 2λ

Σ

�
ζ �3

f
res
NL 2|non BD ∼

�
1
c2
s

− 1− 2λ

Σ

� �
c
2
s

�

�

0

� ω

H

�5/2
�

∆θ

x0i

�2

X ≡ γab∂µφa∂νφb
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Summary

• Effective field theory and decoupling of massive modes 
becomes more subtle in multi-field models.

• Strong bound on M for single field models from 
classical dynamics (c.f. Weinberg) can be relaxed.

• Quantum fluctuations of massive fields may leave 
imprints on light field (curvature mode), both in the 
power spectrum and in non-Gaussianity. 

• Such effects are not captured by the Goldstone mode 
method of Senatore and Zaldarriaga without breaking 
the shift symmetry. 
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