Effective Field Theory \& Decoupling in Multifield Inflation

Gary Shiu
University of Wisconsin

Work in progress with Jiajun Xu

Inflation as an EFT

- Single "Order Parameter": $\Phi(\mathrm{x}, \mathrm{t})$

- UV incomplete: $\delta V \sim \frac{V}{M_{P}^{2}} \phi^{2} \leftrightharpoons \eta \sim \mathcal{O}(1)$

Inflation in String Theory

Rarely a single field model: many more field directions!

Conventional Wisdom

- If $m>H$, we can integrate them out:

$$
\text { Integrate out }\left\{\begin{array}{l}
\AA^{\mathrm{m}} \\
\frac{\ddagger}{\ddagger} \mathrm{H} \\
\frac{\mp}{\ddagger} \mathrm{~m}_{\Phi}
\end{array}\right.
$$

- Only the light fields $(\mathrm{m}<\mathrm{H})$ contribute to curvature/ isocurvature perturbations.
- If only one with $m<H$, effective single field model.

Short Distance Scale

Slow-roll inflation:

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{1}{2} M_{P}^{2} R+\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-V(\phi)\right]+\mathcal{O}\left(\frac{1}{M}\right)
$$

In one Hubble time: $\quad \Delta \phi=\dot{\phi} H^{-1}=\sqrt{2 \epsilon} M_{P}$

For EFT truncation to finite powers of Φ / M :

$$
M \gg \sqrt{2 \epsilon} M_{P}
$$

Weinberg, 08

Classical Background

Groot Nibbelink \& van Tent
Multi-field: $\quad \mathcal{D}_{t} \dot{\phi}^{a} \equiv \frac{\mathrm{~d} \dot{\phi}^{a}}{\mathrm{~d} t}+\Gamma_{b c}^{a} \dot{\phi}^{b} \dot{\phi}^{c}, \quad \Gamma_{b c}^{a}=\frac{1}{2} \gamma^{a d}\left(\gamma_{d b, c}+\gamma_{d c, b}-\gamma_{b c, d}\right)$

Introduce vielbeins:

$$
e_{a}^{I} e_{b}^{J} \delta_{I J}=\gamma_{a b}, \quad e_{a}^{I} a_{b}^{J} \gamma^{a b}=\delta^{I}
$$

Choose: $\quad e_{\zeta}^{a} \equiv \frac{\dot{\phi}^{a}}{\dot{\phi}_{0}}, e_{\sigma}^{a} \equiv \frac{\mathcal{D}_{t} \epsilon_{\sigma}^{a}}{\left|\mathcal{D}_{t} \epsilon_{\zeta}^{a}\right|}$
\& the rest denoted by
Composite field $\dot{\phi}_{0}^{2} \equiv \gamma_{a b} \dot{\phi}^{a} \dot{\phi}^{b}$ satisfies "single-field" EOM:

$$
\ddot{\phi}_{0}+3 H \dot{\phi}_{0}+\nabla_{\|} V=0, \quad \nabla_{\|} V \equiv \frac{\dot{\phi}^{a}}{\dot{\phi}_{0}} \nabla_{a} V
$$

Classical Background

Groot Nibbelink \& van Tent
Multi-field: $\quad \mathcal{D}_{t} \dot{\phi}^{a} \equiv \frac{\mathrm{~d} \dot{\phi}^{a}}{\mathrm{~d} t}+\Gamma_{b c}^{a} \dot{\phi}^{b} \dot{\phi}^{c}, \quad \Gamma_{b c}^{a}=\frac{1}{2} \gamma^{a d}\left(\gamma_{d b, c}+\gamma_{d c, b}-\gamma_{b c, d}\right)$

Introduce vielbeins:

$$
e_{a}^{I} e_{b}^{J} \delta_{I J}=\gamma_{a b}, \quad e_{a}^{I} a_{b}^{J} \gamma^{a b}=\delta^{I}
$$

Choose: $\quad e_{\zeta}^{a} \equiv \frac{\dot{\phi}^{a}}{\dot{\phi}_{0}}, \quad e_{\sigma}^{a} \equiv \frac{\mathcal{D}_{t} \epsilon_{G}^{a}}{\left|\mathcal{D}_{t} \xi_{\xi}^{a}\right|}$
\& the rest denoted by e_{s}^{a}
Composite field $\dot{\phi}_{0}^{2} \equiv \gamma_{a b} \dot{\phi}^{a} \dot{\phi}^{b}$ satisfies "single-field" EOM:

$$
\ddot{\phi}_{0}+3 H \dot{\phi}_{0}+\nabla_{\|} V=0, \quad \nabla_{\|} V \equiv \frac{\dot{\phi}^{a}}{\dot{\phi}_{0}} \nabla_{a} V
$$

Classical Background

Groot Nibbelink \& van Tent
Multi-field: $\quad \mathcal{D}_{t} \dot{\phi}^{a} \equiv \frac{\mathrm{~d} \dot{\phi}^{a}}{\mathrm{~d} t}+\Gamma_{b c}^{a} \dot{\phi}^{b} \dot{\phi}^{c}, \quad \Gamma_{b c}^{a}=\frac{1}{2} \gamma^{a d}\left(\gamma_{d b, c}+\gamma_{d c, b}-\gamma_{b c, d}\right)$

Turn rate:
$\dot{\theta}=-\frac{e_{\sigma}^{a} \nabla_{a} V}{\dot{\phi}_{0}}=-\frac{\nabla_{\sigma} V}{\dot{\phi}_{0}}$
centripetal force

Composite field $\dot{\phi}_{0}^{2} \equiv \gamma_{a b} \phi^{a} \phi^{b}$ satisfies "single-field" EOM:

$$
\ddot{\phi}_{0}+3 H \dot{\phi}_{0}+\nabla_{\|} V=0, \quad \nabla_{\|} V \equiv \frac{\dot{\phi}^{a}}{\dot{\phi}_{0}} \nabla_{a} V
$$

Mass Scales

- Mass scales tangent to classical trajectory:

$$
M_{\|} \gtrsim \sqrt{2 \epsilon} M_{P}
$$

- Mass scales transverse to classical trajectory: no bound due to $\dot{\phi}_{\perp}=0$ except for backreaction on ε :

$$
\frac{M_{\perp}}{H} \gg \frac{\dot{\theta}}{H}
$$

rather weak! Heavy physics naively decoupled.

Quadratic Fluctuations

In terms of the veilbeins: $\quad e_{a}^{I} e_{b}^{J} \delta_{I J}=\gamma_{a b}, e_{a}^{I} e_{b}^{J} \gamma^{a b}=\delta^{I J}$
Define spin connection: $\quad Y_{J}{ }_{J} \equiv e_{a}^{I} D_{t} e_{J}^{a}$.
Quantum quadratic action can be expressed in terms of

$$
Y_{J}^{I}, \dot{\theta}
$$

and the mass matrix $m_{I J}=e_{I}^{a} e_{J}^{b} m_{a b}$:

$$
\begin{aligned}
m_{a b} & =M_{a b}-\frac{1}{a^{3}} \mathcal{D}_{t}\left[\frac{a^{3} \dot{\phi}_{0}^{2}}{H} e_{a}^{\zeta} e_{b}^{\zeta}\right] \\
M_{a b} & \equiv \nabla_{a} \nabla_{b} V+2 \dot{H} \mathcal{R}_{a c d b} e_{\zeta}^{c} e_{\zeta}^{d}
\end{aligned}
$$

Quadratic Fluctuations

In conformal time \& properly normalizing the fluctuations:

$$
\begin{align*}
\mathcal{L}_{(\zeta)}^{(2)} & =\frac{1}{2}\left(v_{\zeta}^{\prime 2}-\left(\partial v_{\zeta}\right)^{2}+\frac{z^{\prime \prime}}{z} v_{\zeta}^{2}\right) \tag{15}\\
\mathcal{L}_{(\sigma)}^{(2)} & =\frac{1}{2}\left[v_{\sigma}^{\prime 2}-\left(\partial v_{\sigma}\right)^{2}+\left(\frac{a^{\prime \prime}}{a}-a^{2} M_{\sigma \sigma}+\theta^{\prime 2}-a^{2} Y_{\sigma}{ }^{m} Y_{m \sigma}\right) v_{\sigma}^{2}\right] \tag{16}\\
\mathcal{L}_{(m)}^{(2)} & =\frac{1}{2}\left[v_{m}^{\prime 2}-\left(\partial v_{m}\right)^{2}+\left(\frac{a^{\prime \prime}}{a} \delta_{m n}-a^{2} M_{m n}+a^{2} Y^{I}{ }_{m} Y_{I n}\right) v_{m} v_{n}+2 a Y_{m n}\left(v_{n} v_{m}^{\prime}-v_{m} v_{n}^{\prime}\right)\right] \tag{17}\\
\mathcal{L}_{(\zeta, \sigma)}^{(2)} & =\left(-2 \theta^{\prime} v_{\sigma} v_{\zeta}^{\prime}+2 \frac{z^{\prime}}{z} \theta^{\prime} v_{\sigma} v_{\zeta}\right) \tag{18}\\
\mathcal{L}_{(\sigma, m)}^{(2)} & =\frac{1}{2}\left(-a^{2} M_{\sigma m}+a^{2} Y^{I}{ }_{\sigma} Y_{I m}\right) v_{\sigma} v_{m}+a Y_{\sigma m}\left(v_{m} v_{\sigma}^{\prime}-v_{\sigma} v_{m}^{\prime}\right) \tag{19}
\end{align*}
$$

contains additional terms not present in the Goldstone approach of Senatore, Zaldarriaga. Imposing shift symmetries and high energy limit forbid many interesting contributions from turns in field space.

Two Field Model

General results simplified for models with two fields:

$$
\begin{aligned}
& \mathcal{L}_{0}^{(2)}=\frac{1}{2}\left(v_{\zeta}^{\prime 2}-\left(\partial_{i} v_{\zeta}\right)^{2}+\frac{z^{\prime \prime}}{z} v_{\zeta}^{2}\right)+\frac{1}{2}\left[v_{\sigma}^{\prime 2}-\left(\partial_{i} v_{\sigma}\right)^{2}+\left(\frac{a^{\prime \prime}}{a}-a^{2} M_{\sigma \sigma}+\theta^{\prime 2}\right) v_{\sigma}^{2}\right] \\
& \mathcal{L}_{\text {int }}^{(2)}=-2 \theta^{\prime} v_{\sigma} v_{\zeta}^{\prime}+2 \frac{z^{\prime}}{z} \theta^{\prime} v_{\sigma} v_{\zeta}
\end{aligned}
$$

where $\quad M_{\sigma \sigma}=V_{\sigma \sigma}+\epsilon H^{2} \mathcal{R}$
Define:

$$
\eta_{\|} \equiv \frac{V_{\zeta \zeta}^{H^{2}}}{}, \quad \eta_{\perp} \equiv \frac{M_{\sigma \sigma}}{H^{2}}, \quad \varrho \equiv \frac{\dot{\theta}}{H},
$$

We can read off the "effective masses", c.f.,

$$
\mathcal{L}=\frac{1}{2}\left(u^{\prime 2}-(\partial u)^{2}+a^{2} H^{2}\left(2-\epsilon-\frac{m^{2}}{H^{2}}\right) u^{2}\right)
$$

Two Field Model

General results simplified for models with two fields:

$$
\begin{aligned}
& \mathcal{L}_{0}^{(2)}=\frac{1}{2}\left(v_{\zeta}^{\prime 2}-\left(\partial_{i} v_{\zeta}\right)^{2}+\frac{z^{\prime \prime}}{z} v_{\zeta}^{2}\right)+\frac{1}{2}\left[v_{\sigma}^{\prime 2}-\left(\partial_{i} v_{\sigma}\right)^{2}+\left(\frac{a^{\prime \prime}}{a}-a^{2} M_{\sigma \sigma}+\theta^{\prime 2}\right) v_{\sigma}^{2}\right] \\
& \mathcal{L}_{\text {int }}^{(2)}=-2 \theta^{\prime} v_{\sigma} v_{\zeta}^{\prime}+2 \frac{z^{\prime}}{z} \theta^{\prime} v_{\sigma} v_{\zeta}
\end{aligned}
$$

Effective masses:

$$
\begin{aligned}
& m_{\varsigma}^{2}=H^{2}\left(\eta_{\|}-\varrho^{2}-6 \epsilon-2 \epsilon \eta+2 \epsilon^{2}\right) \\
& m_{\sigma}^{2}=H^{2}\left(\eta_{\perp}-\varrho^{2}\right)
\end{aligned}
$$

Several scenarios have been considered:
[Amendola, Gordon, Wands, Sasaki]; [Gordon,Wands, Bassett, Maartens];
[Peterson,Tegmark]; [Sasaki, Stewart]; [Venizzi,Wands]; [Meyers, Sivanandam]; [Garcia-Bellido,Wands];[Chen,Wang]; [Achucarro, Gong, Hardeman, Palma, Patil];[Cremonini, Lalak, Turzynski];[Baumann,Green]; ...

Two Field Model

I) Slow-roll Slow-turn (SRST): $\quad \eta_{\|} \ll 1, \eta_{\perp} \ll 1$ and $\varrho \ll 1$.

Two light fields, but can treat the interaction as perturbations
V_{σ} sources superhorizon evolution of V_{ζ}
Transfer functions: [Amendola, Gordon, Wands, Sasaki]; [Gordon, Wands, Bassett, Maartens]; [Peterson,Tegmark]

סN formalism: [Sasaki, Stewart]; [Venizzi, Wands]; [Meyers, Sivanandam]
The two approaches are equivalent [Garcia-Bellido,Wands]

Two Field Model

II) Quasi-single field: $\quad \eta_{\|} \ll 1, \eta_{\perp} \sim 1$ and $\varrho \ll 1 . \quad$ [Chen, Wang]

A massive field which is critically damped, hence will decay (but slowly) after horizon exit.

Massive field can have large self-interactions which can mediate interaction among the light field through $\mathcal{L}_{\text {int }}^{(2)}$

Interaction part $\mathcal{L}_{\text {int }}^{(2)}$ can still be treated as perturbations.

Two Field Model

III) Effective Single-Field Limit $\quad \eta_{\|} \ll 1, \eta_{\perp} \gg 1$

Conventional Wisdom: effectively a single field model
Turn in field space introduces interesting features:

$$
c_{s}^{-2} \approx 1+\frac{4 \varrho^{2}}{\eta_{\perp}-\varrho^{2}-2+k^{2} /\left(a^{2} H^{2}\right)} \quad \text { [Achucarro, Gong, Hardeman, Palma, Patil] }
$$

Sound speed is ill-defined when: $\quad \varrho^{2}>\eta_{\perp} \gg 1$
In this limit, masses are comparable; also $\mathcal{L}_{\mathrm{itt}}^{(2)}$ is significant, need to solve EOM of full quadratic action [Cremonini, Lalak, Turzynski]

Strong coupling scale for theories with a small sound speed.
[Baumann,Green]

Sharp Turn in Two-Field Model

e.g., features in the potential or momentarily large kinetic mixing

For the backreaction of the turn to be small: $\eta_{\perp}>\rho^{2}$
Momentarily large ρ leads to (i) sudden change in masses, (ii) projection of perturbations along σ to the inflation direction.

We focus on the effects of sharp turn

Subsequent oscillations of the massive field recently studied by Chen (trigger resonant non-Gaussianity).

Sharp Turn in Two-Field Model

The EOMs for the coupled system are:

$$
\begin{aligned}
\frac{\mathrm{d}^{2} v_{\zeta}}{\mathrm{d} x^{2}}+\left(1-\frac{2}{x^{2}}\right) v_{\zeta}-\frac{2 \varrho}{x^{2}} v_{\sigma}+\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{2 \varrho}{x} v_{\sigma}\right) & =0 \\
\frac{\mathrm{~d}^{2} v_{\sigma}}{\mathrm{d} x^{2}}+\left(1-\frac{2-\eta_{\perp}+\varrho^{2}}{x^{2}}\right) v_{\sigma}-\frac{4 \varrho}{x^{2}} v_{\zeta}-\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{2 \varrho}{x} v_{\zeta}\right) & =0
\end{aligned}
$$

Momentary turn: $\quad \varrho=\frac{\dot{\theta}}{H}=\frac{\Delta \theta}{H} \delta\left(t-t_{0}\right)=\Delta \theta x_{0} \delta\left(x-x_{0}\right) \quad x \equiv k \tau$
Matching b.c.: $\quad v_{\zeta}\left(x<x_{0}\right)=v^{+}(k, \tau)$,

$$
\begin{aligned}
v_{\zeta}\left(x>x_{0}\right) & =C_{1} v^{+}(k, \tau)+C_{2} v^{-}(k, \tau), \\
v^{ \pm}(k, \tau) & =\frac{-1}{\sqrt{2 k}} e^{\mp i x}\left(\frac{1}{x} \pm i\right) .
\end{aligned}
$$

gives:

$$
\begin{aligned}
& C_{1}=1-\frac{\Delta \theta}{x_{0}} e^{i x_{0}}\left(1+\frac{i}{x_{0}}\right) \sqrt{2 k} v_{\sigma}\left(x_{0}\right), \\
& C_{2}=-\frac{\Delta \theta}{x_{0}} e^{-i x_{0}}\left(1-\frac{i}{x_{0}}\right) \sqrt{2 k} v_{\sigma}\left(x_{0}\right) .
\end{aligned}
$$

Power Spectrum

Similar to initial state effect on inflationary spectrum:

$$
P_{\zeta}=\frac{k^{3}}{2 \pi^{2}}\left|\frac{v_{\zeta}}{a \sqrt{2 \epsilon}}\right|_{x \rightarrow 0}^{2}=\frac{H^{2}}{8 \pi^{2} \epsilon}\left|C_{1}+C_{2}\right|^{2}
$$

not only a change in sound speed!
In the small x_{0} limit: $\quad\left|C_{1}+C_{2}\right| \rightarrow 1, \quad x_{0} \rightarrow 0$.
In the large x_{0} limit: $\quad\left|C_{1}+C_{2}\right|^{2} \approx 1+2 \Delta s \frac{\sin \left(2 x_{0}\right)}{x_{0}}, x_{0} \gg \Delta \theta, \eta_{\perp}$
even the sharp turn happens more than 60e-folds before inflation ends, it may still leave an imprint.

3-point functions

- Following the standard method: $\left\langle\zeta^{3}\right\rangle=-i \int d t\left\langle\left[\zeta^{3}, H_{I}(t)\right]\right\rangle$

$$
\zeta(\mathbf{k}, \tau) \equiv \frac{v_{\zeta}(\mathbf{k}, \tau)}{a \sqrt{2 \epsilon}}=u(\mathbf{k}, \tau) a_{\mathbf{k}}+u^{*}(-\mathbf{k}, \tau) a_{-\mathbf{k}}^{\dagger}
$$

- Consider a simple interaction vertex

$$
\begin{gathered}
H_{I}=-\int d x^{3} a^{3} \epsilon^{2} \zeta \zeta^{\prime 2} \\
\left\langle\zeta^{3}\right\rangle=\left.i\left(u_{u_{1}} u_{\mathbf{k}_{2}} u_{\mathbf{k}_{3}}\right)\right|_{\tau=0} \int_{-\infty}^{0} d \tau a^{2} \epsilon^{2} u_{u_{1}}^{*}(\tau) \frac{u_{\mathbf{k}_{2}}^{*}(\tau)}{d \tau} \frac{u_{k_{s}}^{*}(\tau)}{d \tau} \cdots
\end{gathered}
$$

- Non Bunch-Davis correction: flip the sign of one of the momentum, with overall factor $\left|C_{2}\right|^{2}$

$$
f_{N L} \sim \mathcal{O}(\epsilon)\left|C_{2}\right|^{2} \quad \text { peaked in the folded limit } k_{1}+k_{2}=k_{3}
$$

3-point functions

- Generically the signal in 3-pt function is small oscillation in the power spectrum $\sim\left|C_{2}\right| \lesssim 0.1$

$$
f_{N L} \sim \mathcal{O}(\epsilon)\left|C_{2}\right|^{2} \sim 10^{-4}
$$

- After the turn, the massive field is generically oscillating \Rightarrow resonant enhancement of 3 -point function
[Chen, Easther, Lim (2008)] [Chen 201 I]

$$
\begin{gathered}
H_{I}=-\int \mathrm{d} \tau \mathrm{~d} x^{3} \frac{1}{2} a^{2} \epsilon \dot{\eta} \zeta^{2} \zeta^{\prime} \\
\left.f_{\mathrm{NL}}^{\mathrm{res}}\right|_{\text {non BD }} \sim \frac{\sqrt{\pi}}{8} \beta\left(\frac{M_{\sigma}}{H}\right)^{5 / 2}\left(\Delta \theta \frac{k_{0}}{k_{1}}\right)^{2} \sin \left(\frac{2 M_{\sigma}}{H} \ln \tilde{K}_{1}+\phi\right)+\mathrm{perm} \quad \tilde{K}_{i}=K-2 k_{i} \\
\beta \ll 1, \quad M_{\sigma} \gg H, \quad \beta \frac{M_{\sigma}^{2}}{H^{2}} \gg 1
\end{gathered}
$$

3-point functions

- Comparing with result based on Bunch-Davis state

$$
\begin{aligned}
\left.f_{N L}^{\text {res }}\right|_{\text {BD }} & \sim \sin \left(\frac{\omega}{H} \ln K+\text { phase }\right) \\
\left.f_{N L}^{\text {res }}\right|_{\text {non }} \text { BD } & \sim \sin \left(\frac{\omega}{H} \ln \tilde{K}_{i}+\text { phase }\right)
\end{aligned}
$$

- A new origin of non BD component - Sharp turn
c.f. [Chen 2010]
- Role of the massive field:
* Provides non BD component through sharp turn
* Provides oscillating time dependent background to trigger resonant effect

3-point functions

- If the inflaton action is $\mathrm{p}(\mathrm{X}) \quad X \equiv \gamma_{a b} \partial_{\mu} \phi^{a} \partial_{\nu} \phi^{b}$

$$
\begin{gathered}
H_{I}=-\int \mathrm{d} \tau \mathrm{~d} x^{3} \frac{a \epsilon}{H c_{s}^{2}}\left(\frac{1}{c_{s}^{2}}-1-\frac{2 \lambda}{\Sigma}\right) \zeta^{\prime 3} \\
\left.f_{\mathrm{NL} 2}^{\text {res }}\right|_{\text {non } \mathrm{BD}} \sim\left(\frac{1}{c_{s}^{2}}-1-\frac{2 \lambda}{\Sigma}\right)\left(\frac{c_{s}^{2}}{\epsilon}\right)_{0}\left(\frac{\omega}{H}\right)^{5 / 2}\left(\frac{\Delta \theta}{x_{0 i}}\right)^{2}
\end{gathered}
$$

Effects further enhanced by the small sound speed!

Summary

- Effective field theory and decoupling of massive modes becomes more subtle in multi-field models.
- Strong bound on M for single field models from classical dynamics (c.f.Weinberg) can be relaxed.
- Quantum fluctuations of massive fields may leave imprints on light field (curvature mode), both in the power spectrum and in non-Gaussianity.
- Such effects are not captured by the Goldstone mode method of Senatore and Zaldarriaga without breaking the shift symmetry.

